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The series of investigations begun by us,1 and since continued by the 
junior author, on the free energy of dilution of molten silver bromide by the 
alkali bromides, now includes all of the lat ter except cesium bromide and 
has reached a stage where their theoretical interpretation may be at­
tempted, for the regularities are such tha t the inclusion of cesium bromide 
could hardly yield any additional information of importance. 

A graphic summary of the results2 is given in Fig. 1, where Fi — F1 is 
plotted against NJj. Fx is the partial molal free energy of the silver bromide 
in the solution, connected with the activity by the relation Fj = RT In O1. 
If the solution were ideal, C1 would equal Ni and F] = RT In Ni. From this 
it is seen tha t F1 — F1 = RT In ai/Ni = RT In 71, where 7X is the activity 
coefficient. N2 is the mole fraction of the alkali bromide. 

I t is evident, from Fig. 1, t ha t the da ta plotted in this way show a re­
markably linear relation. The pairs of points are for 550 and 600°; 
they fall so close together as to indicate tha t temperature is practically 
without effect. We may conclude from this t ha t the partial molal entropy 
is the same as it would be in an ideal solution, i. e., S1 — S1 = 0, or Ŝ 1 = R 
In Ni, indicating tha t the randomness of the arrangement is the same in both 
cases. These systems agree with the senior author 's definition of regular 
solutions.3 

The deviation from ideal behavior of the solutions with lithium bromide 
and sodium bromide is in the direction of unmixing, while those with potas­
sium bromide and rubidium bromide deviate in the direction of compound 
formation. This is in harmony with the fact reported by Sandonnini and 
Scarpa4 of the non-congruent freezing-out of a solid, probably AgBr-RbBr, 

1 E. J. Salstrom and J. H. Hildebrand, THIS JOURNAL, 52, 4650 (1930); E. J. 
Salstrom, ibid., 53, 1794, 3385 (1931); 54, 4252 (1932). 

2 Since publication of the paper on the system AgBr-LiBr, an additional cell has 
been studied containing a solution with 17.63 mole per cent, of AgBr, yielding the fol­
lowing results 

t, °C. E - E o millivolts - F i , cal. Fi — F*, cal. y 

500 61.7 1425 1240 2.20 
550 69.9 1610 1230 2.11 
600 78.0 1800 1210 2.01 

These data have been included in Fig. 1. 
3 J . H. Hildebrand, THIS JOURNAL, 51, 66 (1929). 
4 Sandonnini and Scarpa, AUi accad. Lincei, 22 [II], 517 (1913). 
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in the case of the last-named system. This suggests that the solutions de­
viating in this direction may be explained by assuming an equilibrium of the 
type B r - + AgBr = AgBr2

-. We shall not adopt this point of view, how­
ever, because, first, it seems not to harmonize with the above-mentioned 
fact regarding the entropy and, second, a different type of explanation 
would then have to be applied to the solutions with lithium bromide and 
sodium bromide, whereas it is evident from Fig. 1 that we are dealing with 
a family of curves showing a quite regular trend from one extreme to the 
other, and that a single type of explanation should, if possible, be found for 
all four systems. 
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We will consider, first, the magnitude and nature of the interionic forces 
involved. All of the salts comprised in these systems crystallize in simple 
cubic lattices. The lattice constants are given in order in Table I. 
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TABLE I 
LiBr AgBr NaBr KBr RbBr 

Lattice constant, A. 2.745 2.885 2.97 3.29 3.43 
Molal volume, cc. at 700° 35.4 35.6 43.4° 55.4" 61.5 

* Extrapolated below the freezing point. 

It is seen that silver bromide falls almost midway between lithium bro­
mide and sodium bromide. The molal volumes of the molten salts, also 
given in Table I, show that lithium bromide and silver bromide are in this 
respect nearly identical. If, as is probable, something like the simple cubic 
arrangement persists in the liquid state, we might expect the electrostatic 
"lattice energies" of these two salts to be nearly identical (except for the 
uncertainty of the repulsive term for Ag+) and their solutions to show a 
close approximation to Raoult's law, which is far from being the case. 
However, the energy involved in forming solid silver bromide from its 
gaseous ions is greater than the corresponding figure for lithium bromide, 
and, on account of the greater expansion of the latter on melting, the differ­
ence for the molten salts would be still greater in favor of silver bromide. 
Evidently, then, the "lattice energies" for the liquids are in the order 
silver bromide, lithium bromide, sodium bromide, potassium bromide, 
rubidium bromide, while the order indicated by Fig. 1 would have to be 
lithium bromide, sodium bromide, silver bromide, potassium bromide, 
rubidium bromide. Moreover, while likeness in "lattice energies" might 
be expected to lead to ideal solutions, unlikeness in the magnitudes of in­
ternal forces usually leads to positive deviations for both components, re­
gardless of which is greater, and not to the negative deviations shown with 
potassium bromide and rubidium bromide. 

Positive deviations from Raoult's law are frequently accompanied by 
an expansion on mixing and vice versa; this might be expected to cause a 
weakening or strengthening, respectively, of the internal forces accounting 
for the direction of the departure from ideality. However, such an ex­
planation is not applicable to these systems. The changes of volume, in 
cc , on mixing 0.5 mole of silver bromide with 0.5 mole each of lithium bro­
mide, sodium bromide, potassium bromide and rubidium bromide are, 
respectively, -0 .13 , +0.17, +0.27, +0.42. These volume changes are 
in the opposite order to that required by the above explanation. 

We are led, consequently, to the conclusion that the behavior of these 
systems depends upon a difference in the kind of bond existing in silver bro­
mide on the one hand and the alkali bromides on the other, the latter being 
completely, the former incompletely, ionic. We may note that the electric 
conductivity of liquid silver bromide has a temperature coefficient very 
different from those of the alkali bromides. The melting point of silver 
bromide is much lower than that of lithium bromide, in spite of the similar 
lattice constant. We recall the existence of AgBr2_ in aqueous solution 
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and the solid, probably RbAgBr2, mentioned earlier. These and other dif­
ferences indicate that a simple electrostatic treatment of silver bromide is 
inappropriate. We will accordingly regard the bond between silver and 
bromine as tending to tighten into a non-polar bond, this tendency being 
hindered most by the presence of the small lithium ion and assisted most 
by the large rubidium ion, but without, in any case, altering the lattice 
arrangement. 

It is possible to justify the form of the equation, F1 — F \ = JNSJ, by 
the following statistical treatment, based upon that of Heitler6 for non-
ionic solutions. 

Let us consider a solution of M1 moles of silver bromide with M2 moles of 
MBr, M being any alkali metal. We will assume that Ag+ and M + can 
replace each other without altering the arrangement, which is probably 
simple cubic, although the following analysis will apply to any arrangement. 
The potential of a silver ion will be altered by the substitution of an alkali 
ion by an amount depending upon the distance of the latter from the former. 
We will designate the nearest as first order, the next as second order, etc. 
In a simple cubic lattice there are twelve first order positive ions, six second 
order, twelve third order, etc.; but we will make the treatment general for 
other types of lattice by denoting these by 2q, 2g', 2q", etc. The probabil­
ity that a given pair of ions in any order are both Ag+ is Nx ; the probability 
for two M + is Nj and that one is Ag+ and the other M + is 2NiN2, where Ni 
and N2 are the respective mole fractions. The total number of first order 
pairs is (wi + n^qA, where A is the Avogadro number. The number of 
first order pairs in which both are Ag+ is (W1 + n^qAt^l; for both M + , it 
is (W1 + n^)qA^\ and for one Ag+ and one M + it is 2(M1 + W2)(^N1N2. 
By substituting q' and q", respectively, we obtain expressions for the 
number of second and third order combinations. 

We will designate by (plv <pu, <p"u, etc., the contribution of each pair of 
Ag+ toward the potential of the lattice and, similarly, use <p22 for M + — M + 

and <p\2 for Ag+ — M + . The necessary B r - will be considered as included 
in these potentials rather than accounted for by extra terms. 

The energy of the lattice of Mx + «2 moles of solution can then be ex­
pressed by 

Em = («i + W2) A{Np:q<pn + TXp>q<p22 + 2N1N8 g2^12) 

where 2q<p = q<p + q'<p' + q"<p" + 
This expression we will abbreviate by substituting eu for A2qipn and 

similarly, C22 and e]2, yielding 

Ea = («1 + »2)(Nj«n + N|«J2 + 2N1N2Cl2) 

The corresponding energies of the pure constituents would be E11 = 
M1Cu and E22 = M2S22, hence the energy of mixing, AE12, remembering that 

5 Heitler, Ann. Physik, [4] 80, 630 (1926). 
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Ni = MI/(MI + fit), etc., would be A£]2 = l-r^— (2e12 — en — e22). It 
Wi + W2 

can be readily shown that this corresponds to Si — Ei = N2(2ei2 — «n — 
£22) and I2 — E2 = N?(2eis — «n — 622), where S is the partial molal 
energy and E the molal energy. 

From the equation F = E — TS + PV, we can write Fx — F*I = Si — E1 = 
T(S"I — S1) + P(VI — V1), but S*! = Ei and P(V1 — V1) is here negligible; 
furthermore, the measurements show (vide supra) that Si — Si = 0, hence 
we can write Fx — Fx = N2 (2ei2 — eu — ^22), which is the type of func­
tion shown in Fig. 1 to fit the data very satisfactorily. The slope of the 
line depends upon whether 2ei2 is greater or less than en + «22- We see no 
way, at present, of calculating this, except from the measurements them­
selves, which yield, for Fj — F\, when Ni = 0, for silver bromide in lithium 
bromide, +1880 cal., in sodium bromide +1050 cal., in potassium bro­
mide, — 1480 cal., in rubidium bromide, —2580 cal. 

Summary 

The experimental data for the excess of the actual partial molal free 
energy over the ideal, for molten solutions of silver bromide in lithium 
bromide, sodium bromide, potassium bromide and rubidium bromide, are 
shown to fit the relation Fi — F1 = &N2; the values of b, in cal., are, re­
spectively, 1880, 1050, -1480, -2580. The constant, b, is practically in­
dependent of temperature, hence the actual partial molal entropy is the 
same as the ideal for solutions of the same composition. 

A statistical treatment of the solutions is shown to yield an equation of 
the above form. This is based upon the concept that the presence of a 
large alkali ion, such as rubidium ion, in a lattice of silver bromide allows a 
tightening of the bond between silver and bromine, while a small alkali 
ion has the reverse effect. 
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